Standard Practice for (Analytical Procedure) Determining Transmissivity, Storage Coefficient, and Anisotropy Ratio from a Network of Partially Penetrating Wells
Importancia y uso:
5.1 This practice is one of several available for determining vertical anisotropy ratio. Among other available methods are Weeks ((5); see Practice D5473/D5473M), that relies on distance-drawdown data, and Way and McKee (6), that utilizes time-drawdown data. An important restriction of the Weeks distance-drawdown method is that the observation wells need to have identical construction (screened intervals) and two or more of the observation wells need to be located at a distance from the pumped well beyond the effects of partial penetration. The procedure described in this practice general distance-drawdown method, in that it works in theory for most observation well configurations incorporating three or more wells, provided some of the wells are within the zone where flow is affected by partial penetration.
5.2 Assumptions:
5.2.1 Control well discharges at a constant rate, Q.
5.2.2 Control well is of infinitesimal diameter and partially penetrates the aquifer.
5.2.3 Data are obtained from a number of partially penetrating observation wells, some screened at elevations similar to that in the pumped well and some screened at different elevations.
5.2.4 The aquifer is confined, homogeneous and areally extensive. The aquifer may be anisotropic, and, if so, the directions of maximum and minimum hydraulic conductivity are horizontal and vertical, respectively.
5.2.5 Discharge from the well is derived exclusively from storage in the aquifer.
5.3 Calculation Requirements—Application of this method is computationally intensive. The function, fs, shown in (Eq 4) should be evaluated numerous times using arbitrary input parameters. It is not practical to use existing, somewhat limited, tables of values for fs and, because this equation is rather formidable, it may not be easily tractable by hand. Because of this, it is assumed the practitioner using this will have available a computerized procedure for evaluating the function fs. This can be accomplished using commercially available mathematical software including some spreadsheet applications, or by writing programs. (7)
Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
Note 3: Most fractured (unconfined) aquifers, even noncarbonates, will have some form of convergent flow to master fissures or channels (Worthington et al., 2016). A relationship is known to occur in carbonates where potentiometric troughs correspond with sub-surface conduits or channels (Quinlan and Ewers, 1989).
Note 4: Commercially available software is available for the calculating, graphing, plotting, and analyses of this practice. The user should verify the correctness of the formulas, graphs, plots and analyses of the software.
Subcomité:
D18.21
Referida por:
D4043-17
Volúmen:
04.08
Número ICS:
13.060.10 (Water of natural resources), 73.100.30 (Equipment for drilling and mine excavation)
Palabras clave:
anisotropy; aquifers; aquifer tests; control wells; groundwater; hydraulic conductivity; observation well; storage coefficient; transmissivity;
$ 1,190
Norma
D5850
Versión
20
Estatus
Active
Clasificación
Practice
Fecha aprobación
2020-06-01
