Standard Test Method for One-Dimensional Consolidation Properties of Saturated Cohesive Soils Using Controlled-Strain Loading
Importancia y uso:
5.1 Information concerning magnitude of compression and rate-of-consolidation of soil is essential in the design of earth structures and earth supported structures. The results of this test method may be used to analyze or estimate one-dimensional settlements, rates of settlement associated with the dissipation of excess pore-water pressure, and rates of fluid transport due to hydraulic gradients. This test method does not provide information concerning the rate of secondary compression.
5.2 Strain Rate Effects:
5.2.1 It is recognized that the stress-strain results of consolidation tests are strain rate dependent. Strain rates are limited in this test method by specification of the acceptable magnitudes of the base excess pressure ratio during the loading phase. This specification provides comparable results to the 100 % consolidation (end of primary) compression behavior obtained using Test Method D2435.
5.2.2 Field strain rates vary greatly with time, depth below the loaded area, and radial distance from the loaded area. Field strain rates during consolidation processes are generally much slower than laboratory strain rates and cannot be accurately determined or predicted. For these reasons, it is not practical to replicate the field strain rates with the laboratory test strain rate.
5.3 Temperature Effects:
5.3.1 Temperature affects the rate parameters such as hydraulic conductivity and the coefficient of consolidation. The primary cause of temperature effects is due to the changes in pore fluid viscosity, but soil sensitivity may also be important. This test method provides results under room temperature conditions, corrections may be required to account for specific field conditions. Such corrections are beyond the scope of this test method. Special accommodation may be made to replicate field temperature conditions and still be in conformance with this test method.
5.4 Saturation Effects:
5.4.1 This test method may not be used to measure the properties of partially saturated soils because the method requires the material to be back pressure saturated prior to consolidation.
5.5 Test Interpretation Assumptions—The equations used in this test method are based on the following assumptions:
5.5.1 The soil is saturated.
5.5.2 The soil is homogeneous.
5.5.3 The compressibility of the soil particles and water is negligible.
5.5.4 Flow of pore water occurs only in the vertical direction.
5.5.5 Darcy's law for flow through porous media applies.
5.5.6 The ratio of soil hydraulic conductivity to compressibility is constant throughout the specimen during the time interval between individual reading sets.
5.5.7 The compressibility of the base excess pressure measurement system is negligible compared to that of the soil.
5.6 Theoretical Solutions:
5.6.1 Solutions for constant rate of strain consolidation are available for both linear and nonlinear soil models.
5.6.1.1 The linear model assumes that the soil has a constant coefficient of volume compressibility (mv). These equations are presented in 13.4.
5.6.1.2 The nonlinear model assumes that the soil has a constant compression index (Cc). These equations are presented in Appendix X1.
Note 2: The base excess pressure measured at the boundary of the specimen is assumed equal to the maximum excess pore-water pressure in the specimen. The distribution of excess pore-water pressure throughout the specimen is unknown. Each model predicts a different distribution. As the magnitude of the base excess pressure increases, the difference between the two model predictions increases. At a base excess pressure ratio of 15 %, the difference in the average effective stress calculation between the two models is about 0.3 %.
5.6.2 The equations for the linear case are used for this test method. This test method limits the time interval between readings and the maximum base excess pressure ratio to values that yield similar results when using either theory. However, it is more precise to use the model that most closely matches the shape to the compression curve.
5.6.3 The nonlinear equations are presented in Appendix X1 and their use is not considered a non-conformance with this test method.
5.6.4 The equations used in this test method apply only to steady state conditions. The transient strain distribution at the start of a loading or unloading phase is insignificant after the steady state factor (F) exceeds 0.4. Data corresponding to lower steady state factors are not used in this test method.
5.7 This test method may be used to measure the compression behavior of free draining soils. For such materials, the base excess pressure will be zero and it will not be possible to compute the coefficient of consolidation or the hydraulic conductivity. In this case, the average effective axial stress is equal to the total axial stress and the results are independent of model.
5.8 The procedures presented in this test method assume a high permeability porous disk is used in the base pressure measurement system. Use of a low permeability porous disk or high-air entry (>1 bar) disk will require modification of the equipment specifications and procedures. These modifications are beyond the scope of this test method and are not considered a non-conformance.
Note 3: The quality of the results produced by application of this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.
Subcomité:
D18.05
Referida por:
D6026-21, D3213-19, D2435_D2435M-11R20, D0653-24A, D8296-19, D2435_D2435M-11R20
Volúmen:
04.08
Número ICS:
93.020 (Earth works. Excavations. Foundation construction. Underground works)
Palabras clave:
compressibility; compressibility coefficient; CRS; consolidation coefficient; consolidation test; consolidometer; hydraulic conductivity; preconsolidation stress; settlement;
$ 1,202
Norma
D4186/D4186M
Versión
20e2
Estatus
Active
Clasificación
Test Method
Fecha aprobación
2020-11-01
