Standard Practice for Shearography of Polymer Matrix Composites and Sandwich Core Materials in Aerospace Applications
Importancia y uso:
5.1 Shearography is commonly used during product process design and optimization, process control, after manufacture inspection, and in service inspection, and can be used to measure static and dynamic axial (tensile and compressive) strain, as well as shearing, Poisson, bending, and torsional strains. The general types of defects detected by shearography include delamination, deformation under load, disbond/unbond, microcracks, and thickness variation.
5.2 Additional information is given in Guide E2533 about the advantages and limitations of the shearography technique, use of related ASTM documents, specimen geometry and size considerations, calibration and standardization, and physical reference standards.
5.3 For procedures for shearography of filament-wound pressure vessels, otherwise known as composite overwrapped pressure vessels, consult Guide E2982.
5.4 Factors that influence shearography and therefore shall be reported include but are not limited to the following: laminate (matrix and fiber) material, lay-up geometry, fiber volume fraction (flat panels); facing material, core material, facing stack sequence, core geometry (cell size); core density, facing void content, and facing volume percent reinforcement (sandwich core materials); processing and fabrication methods, overall thickness, specimen alignment, specimen conditioning, specimen geometry, and test environment (flat panels and sandwich core materials). Shearography has been used with excellent results for composite and metal face sheet sandwich panels with both honeycomb and foam cores, solid monolithic composite laminates, foam cryogenic fuel tank insulation, bonded cork insulation, aircraft tires, elastomeric and plastic coatings. Frequently, defects at multiple and far side bond lines can be detected.
Subcomité:
E07.10
Referida por:
E2981-21, E2533-21
Volúmen:
03.04
Número ICS:
49.140 (Space systems and operations), 83.120 (Reinforced plastics)
Palabras clave:
aerospace composites; composites; fiber-reinforced polymer matrix composites; high modulus fibers; high performance composites; honeycomb core; laminates; nondestructive evaluation (NDE); nondestructive inspection (NDI); nondestructive testing (NDT); polymer matrix composites (PMC); sandwich constructions; sandwich core materials; shearography; structural sandwich constructions; thermal shearography; vacuum stress shearography; vibration stress shearography;
$ 1,086
Norma
E2581
Versión
14(2023)
Estatus
Active
Clasificación
Practice
Fecha aprobación
2023-12-01
