Standard Practice for Determining the Site Precision of a Process Stream Analyzer on Process Stream Material
Importancia y uso:
4.1 The analyzer site precision is an estimate of the variability that can be expected in a UAR or a PPTMR produced by an analyzer when applied to the analysis of the same material over an extended time period.
4.2 For applications where the process analyzer system results are required to agree with results produced from an independent PTM, a mathematical function is derived that relates the UARs to the PPTMRs. The application of this mathematical function to an analyzer result produces a predicted PPTMR. For analyzers where the mathematical function, that is, a correlation, is developed by D7235, the analyzer site precision of the UARs is a required input to the computation.
4.3 After the correlation relationship between the analyzer results and primary test method results has been established, a probationary validation (see D3764 and D6122) is performed using an independent but limited set of materials that were not part of the correlation activity. This probationary validation is intended to demonstrate that the PPTMRs agree with the PTMRs to within user-specified requirements for the analyzer system application. The analyzer site precision is a required input to the probationary validation procedures.
4.3.1 If the process stream analyzer system and the primary test method are based on the same measurement principle(s), or, if the process stream analyzer system uses a direct and well-understood measurement principle that is similar to the measurement principle of the PTM then validation is done via D3764. Practice D3764 also applies if the process stream analyzer system uses a different measurement technology from the PTM, provided that the calibration protocol for the direct output of the analyzer does not require use of the PTM.
4.3.2 If the process stream analyzer system utilizes an indirect or mathematically modeled measurement principle such as chemometric or multivariate analysis techniques where PTMRs are required for the development of the chemometric or multivariate model, then validation of the analyzer is done using Practice D6122.
4.3.3 Both the D3764 and D6122 validation practices utilize the statistical methodology of Practice D6708 to conduct the probationary validation. This methodology requires that the site precision for the PTM and the analyzer site precision be available.
4.4 The procedures described herein also serve as the basis for a process analyzer quality control system. A representative sample of the QC material is introduced into the analyzer system in a repeatable fashion. Such sample introduction permits capturing the effect of the analyzer system operating variables on the UAR and PPTMR output signal from the process analyzer. By comparing the observed analyzer responses to the expected response for the QC sample, the fitness for use of the analyzer system can be determined.
Subcomité:
D02.25
Referida por:
D8094-21, D7825-18, D8340-22, D3764-23, D7235-21A, D3764-23, D6122-23
Volúmen:
05.04
Número ICS:
17.120.10 (Flow in closed conduits)
Palabras clave:
analyzer quality control; analyzer site precision; process analyzer;
$ 1,092
Norma
D7808
Versión
22
Estatus
Active
Clasificación
Practice
Fecha aprobación
2022-04-01
