Standard Test Method for Cathodic Disbonding of Exterior Pipeline Coatings at Elevated Temperatures Using Interior Heating
Importancia y uso:
4.1 Damage to a pipe coating is almost unavoidable during transportation and construction. Breaks or holidays in pipe coatings may expose the pipe to possible corrosion since, after a pipe has been installed underground, the surrounding earth will be moisture-bearing and will constitute an effective electrolyte. Applied cathodic protection potentials may cause loosening of the coating, beginning at holiday edges. Spontaneous holidays may also be caused by such potentials. Usually exterior pipeline coatings applied over pipes carrying hot media (oil, gas) are exposed to high temperature inside the pipe and low temperature outside and subjected to temperature gradient. Heat flux is directed from metal (substrate) to the coating. This test method provides accelerated conditions for cathodic disbondment to occur under simulated heating and provides a measure of resistance of coatings to this type of action.
4.2 The effects of the test are to be evaluated by physical examinations and monitoring the current drawn by the test specimens. Usually there is no correlation between the two methods of evaluation, but both methods are significant. Physical examination consists of assessing the effective contact of the coating with the metal surface in terms of observed differences in the relative adhesive bond. It is usually found that the cathodically disbonded area propagates from an area where adhesion is zero to an area where adhesion reaches the original level. An intermediate zone of decreased adhesion may also be present.
4.3 Assumptions associated with test results include:
4.3.1 Maximum adhesion, or bond, is found in the coating that was not immersed in the test liquid, and
4.3.2 Decreased adhesion in the immersed test area is the result of cathodic disbondment.
4.4 Ability to resist disbondment is a desired quality on a comparative basis, but disbondment in this test method is not necessarily an adverse indication of coating performance. The virtue of this test method is that all dielectric-type coatings now in common use will disbond to some degree, thus providing a means of comparing one coating to another.
4.5 The amount of current flowing in the test cell is a relative indicator of the extent of areas requiring protection against corrosion; however, the current density appearing in this test is much greater than that usually required for cathodic protection in natural, inland soil environments.
4.6 Test voltages higher than those recommended may result in the formation of chlorine gas. The subsequent chemical effects on the coating could cast doubt on the interpretation of the test results. Filter tube with fritted disc (see Test Method G95) or layer of sand (40 mesh) put on the coated surface may reduce this effect.
Subcomité:
D01.48
Volúmen:
06.02
Número ICS:
19.040 (Environmental testing), 25.220.01 (Surface treatment and coating in general)
Palabras clave:
cathodic disbondment; elevated temperature; pipeline coatings;
$ 1,092
Norma
D6676/D6676M
Versión
21
Estatus
Active
Clasificación
Test Method
Fecha aprobación
2021-11-01
