Standard Test Method for Evaluating Response Robot Mobility Using Crossing Pitch/Roll Ramp Terrains


Importancia y uso:

5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system mobility and remote operator proficiency. This crossing (discontinuous) pitch/roll ramp terrain specifically challenges robotic system locomotion, suspension systems to maintain traction, rollover tendencies, self-righting in complex terrain (if necessary), chassis shape variability (if available), and remote situational awareness by the operator. As such, it can be used to represent modest outdoor terrain complexity or indoor debris within confined areas.

5.2 The overall size of the terrain apparatus can vary to provide different constraints depending on the typical obstacle spacing of the intended deployment environment. For example, the terrain with containment walls can be sized to represent repeatable complexity within bus, train, or plane aisles; dwellings with hallways and doorways; relatively open parking lots with spaces between cars; or unobstructed terrains.

5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators.

5.4 Evaluation—This test method can be used in a controlled environment to measure baseline capabilities. It can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc.

5.5 Procurement—This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits.

5.6 Training—This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages.

5.7 Innovation—This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.

Subcomité:

E54.09

Referida por:

E2853_E2853M-22, E3380_E3380M-23

Volúmen:

15.08

Número ICS:

13.200 (Accident and disaster control), 25.040.30 (Industrial robots. Manipulators)

Palabras clave:

capability testing; emergency responder; emergency response; operator proficiency; robot evaluation; robot mobility; robot test; terrain;

$ 1,086

Agregar al carrito

Norma
E2827/E2827M

Versión
20

Estatus
Active

Clasificación
Test Method

Fecha aprobación
2020-03-01