Standard Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature
Importancia y uso:
4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.
4.2 Continuous fiber-reinforced ceramic matrix composites generally are characterized by glass or fine grain-sized (<50 μm) ceramic matrices and ceramic fiber reinforcements. CFCCs are candidate materials for high-temperature structural applications requiring high degrees of corrosion and oxidation resistance, wear and erosion resistance, and inherent damage tolerance, that is, toughness. In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although shear test methods are used to evaluate shear interlaminar strength (τZX, τZY) in advanced ceramics, there is significant difficulty in test specimen machining and testing. Improperly prepared notches can produce nonuniform stress distribution in the shear test specimens and can lead to ambiguity of interpretation of strength results. In addition, these shear test specimens also rarely produce a gage section that is in a state of pure shear. Uniaxially forced transthickness tensile strength tests measure the tensile interlaminar strength avoid the complications listed above, and provide information on mechanical behavior and strength for a uniformly stressed material. The ultimate strength value measured is not a direct measure of the matrix strength, but a combination of the strength of the matrix and the level of bonding between the fiber, fiber/matrix interphase, and the matrix.
4.3 CFCCs tested in a transthickness tensile test (TTT) may fail from a single dominant flaw or from a cumulative damage process; therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially forced TTT may be a significant factor in determining the ultimate strength of CFCCs. The probabilistic nature of the strength distributions of the brittle matrices of CFCCs requires a sufficient number of test specimens at each testing condition for statistical analysis and design, with guidelines for test specimen size and sufficient numbers provided in this test method. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that strengths obtained using other recommended test specimens with different volumes and areas may vary due to these volume differences.
4.4 The results of TTTs of test specimens fabricated to standardized dimensions from a particular material, or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire full-size end product or its in-service behavior in different environments.
4.5 For quality control purposes, results derived from standardized TTT specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.
4.6 The strength of CFCCs is dependent on their inherent resistance to fracture, the presence of flaws, damage accumulation processes, or a combination thereof. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.
Subcomité:
C28.07
Referida por:
C1468-19A, C1793-15R24, C1783-15R24
Volúmen:
15.01
Número ICS:
81.060.30 (Advanced ceramics)
Palabras clave:
ceramic matrix composite; CFCC; transthickness tension;
$ 1,187
Norma
C1468
Versión
19a
Estatus
Active
Clasificación
Test Method
Fecha aprobación
2019-07-01
